Benzene Challenges Ahead

Environmental Solutions, Inc.

AHFA

August 7, 2024

D

Background Things to Know

- "Air Toxic"
- "Ambient Air Limits"
- Toxic Pollutant Emission Rate "TPER"
- How TPER is enforced: "Demonstration"

- Recap The DEQ email
- Benzene health effects
- Recap when the NC TAP rule applies

• What is an emission factor

- How to increase EF accuracy
- Source test: What to expect
- Possible outcomes

STRATIS ENVIRONMENTAL SOLUTIONS, INC.

Contents

Benzene ambient air exposure health effects

- General population exposure to benzene is mainly from breathing air
- Ambient air levels of benzene:
 - Can affect reproductive organs
 - Affects blood-forming tissues, such as bone marrow
 - Can cause anemia
 - Long-term exposure can cause cancer, specifically acute myeloid leukemia

REGULATORY PATHWAY TO APPLICABILITY

- Regulatory pathway to applicability IN GENERAL
 MACT boilers are exempt
- For furniture manufacturers, the rule currently applies to:
 - North Carolina Facilities with non-MACT Boilers
 - Title V facilities that took HAP minor limitations on boilers
 - Non-Title V facilities with wood boilers
 - Any other facility with a threshold source of benzene emissions: > 8.5 lb/yr

<u>CONCEPTUAL</u> APPLICABILITY FLOWCHART

* Modification might mean ANY increase in air toxics, facility-wide

Could also be important in the future

- Facilities that have been "passed over" could be evaluated on a case-by-case basis
- Title V facilities with MACT major boilers, if there is a Director's Call
- Potentially, facilities in other states

What is an emission factor?

- A quantitative measure of how much pollutant is release by a particular activity
- Usually developed by source testing several different facilities undertaking the same type of activity, e.g.
 - Petroleum refining
 - Pulp and paper production
 - Surface coating
 - COMBUSTION
- It is NOT an emission or control standard
- Benzene emission factor is focus of this discussion

WOODWAS TE COMBUSTION EMISSIONS CALCULATOR REVISION L 09/03/2019 - OUTPUT SCREEN

CDENR

Instructions: Enter emission source / facility data on the "INPUT" tab/screen. The air emission results and summary of input data are viewed / printed on the "OUTPUT" ab/screen. The different tabs are on the bottom of this screen.

This spreadsheet is for your use only and should be used with caution. DENR does not guarantee the accuracy of the information contained. This spreadsheet is subject to continual revision and updating. It is your responsibility to be aware of the most current information available. DENR is not responsible for errors or omissions that may be contained herein.

SOURCE / FACILITY / USER INPUT SUMMARY (FROM INPUT SCREEN)								
COMPANY	Eaci	lity Name Inc	FACILITY ID NO .:	01/12/00999				
	i du	ity wante, itte.	PERMIT NUMBER:	9999R02				
EMISSION SOURCE DESCRIPTION:	25 MMBTU/HR DR	' WOOD (<= 19 % MOIS	TURE) FIRED BOIL	ER	FACILITY CITY:	ANYTOWN		
EMISSION SOURCE ID NO .:	ES-1				FACILITY COUNTY:	ANYCOUNTY		
PARTICULATE CONTROL DEVICE:	MECHANICAL COL	LECTOR (NO REINJEC	POLLUTANT	CONTROL EFF.				
SPREADSHEET PREPARED BY:	Your Name	FUEL HEAT VALUE	8000	BTU/LB	NOX	0		
ACTUAL FUEL THROUGHPUT:	3000 TON/	'R HHV Used for GHGs (VIMIBTU/TON):	15.38	PM	CALC'D AS 24%		
POTENTIAL FUEL THROUGHPUT:	13688 TON/	'R BOILER TYPE:	STOKER		PM10	CALCID AS 23.9%		
REQUESTED MAX. FUEL THRPT:	13688 TON/	'R NO STACK TEST D	ATA USED		PM2.5	CALC'D AS 45.9%		
METHOD USED TO COMPUTE ACTUAL GHG EMISSIONS: TIER 1: DEFAULT HIGH HEAT VALUE AND DEFAULT EF								
CARBON CONTENT USED FOR GHGS (AS A FRACTION): CARBON CONTENT NOT USED FOR CALCULATION THER CHOSEN								

		ACTUAL I	EMESSION S	POTENTIAL EMISSION S			EMISSION FACTOR		
		(AFTER CONFROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LIMITS)		ibimmBiu	
AIR POLLUTANT EMITTED	b/hr	tons/yr	b/hr	tons/yr	b/hr	tons/yr	uncantralled	cantralled	
PARTICULATE MATTER (PM)	7.93	7.61	10.43	45.66	7.93	34.71	0.417	0.317	
PARTICULATE MATTER<10 MICRONS (PM10)	7.18	6.89	9.43	41.28	7.18	31.43	0.377	0.287	
PARTICULATE MATTER<2.5 MICRONS (PM2.5)	4.43	4.25	8.18	35.81	4.43	19.38	0.327	0.177	
SULFUR DIOXIDE (SO2)	0.63	0.60	0.63	2.74	0.63	2.74	0.025	0.025	
NITROGEN OXIDES (NOx)	12.25	11.76	12.25	53.66	12.25	53.66	0.490	0.490	
CARBON MONOXIDE (CO)	15.00	14.40	15.00	65.70	15.00	65.70	0.600	0.600	
VOLATILE ORGANIC COMPOUNDS (VOC)	0.43	0.41	0.43	1.86	0.43	1.86	0.017	0.017	
LEAD	1.2E-03	1.2E-03	1.2E-03	5.3E-03	1.2E-03	5.3E-03	4.8E-05	4.8E-05	
TOXIC / HAZARDOUS AIR POLLUTANT EMISSIONS INFORMATION									
		ACTUAL I	EMESSION S	POTENTIAL EMISSION S			EMISSION FACTOR		
	CAS	(AFTER CONTROLS / LIMITS)		(BEFORE CONTROLS / LIMITS)		(AFTER CONTROLS / LINITS)		IbimmBlu	
TOXIC / HAZARDOU'S AIR POLLUTANT	NUMBER	ibin	lblyr	b/hr	b/уг	b/hr	lb/yr	uncanirali	sd/cantrolled
Acelaldehyde (TH)	75070	2.08E-02	39.840	2.08E-02	181.770	2.08E-02	181.770	8.30E-04	8.30E-04
Acetophenone (H)	96862	8.00E-08	1.54E-04	8.00E-08	7.01E-04	8.00E-08	7.01E-04	320E-09	3.20E-09
Acralein (TH)	107028	1.00E-01	192.000	1.00E-01	876.000	1.00E-01	876.000	4.00E-03	4.00E-03
Anlimany Unlisted Campounds (campanent of SBC) (H)	SBC-alher	1.98E-04	0.379	1.98E-04	1.730	1.98E-04	1.730	7.90E-06	7.90E-06
Arsenic Unlisted Compounds (component of ASC) (TH)	ASC-alher	5.50E-04	1.056	5.50E-04	4.818	5.50E-04	4.818	2.20E-05	220E-05
(maxemette)	71432	1.05E-01	201.600	1.05E-01	919.800	1.05E-01	919.800	120-115	4/1-10
Benzo(a)pyrene (T)	50328	6.50E-05	0.125	6.50E-05	0.569	6.50E-05	0.569	2.60E-06	2.6UE-06

NCDEQ Benzene EF =

4.2 x 10-3 lb/MMBTU

POLLUTANT	ID	FUEL TYPE	FIRING CONFIGURATION	CONTROL DEVICE	NUMBER OF RUNS	RUN AVERAGE
Benzene	B100	Bark/Wet Wood	Dutch Oven	Wet Scrubber	1	9.95E-04
Benzene	B101	Wet Wood	Stoker	ESP	1	1.61E-03
Benzene	B127	Wet Wood	Not Reported	ESP	2	1.90E-03
Benzene	B133	Wet Wood	Stoker	Fabric Filter	1	1.15E-03
Benzene	B134	Wet Wood	Stoker	ESP	2	2.35E-04
Benzene	B135	Wet Wood	Stoker	ESP	1	1.90E-04
Benzene	B14	Wet Wood	Not Reported	Mechanical Collector	1	2.91E-05
Benzene	B19	Dry Wood	Stoker	Mechanical Collector	1	2.90E-03
Benzene	B26	Wet Wood	Stoker	Wet Scrubber	1	2.72E-04
Benzene	B45	Bark	Stoker	Wet Scrubber	1	4.23E-03
Benzene	B50	Wet Wood	FBC	Uncontrolled	1	3.92E-05
Benzene	B74	Bark/Wet Wood	Stoker	Fabric Filter	1	5.65E -0 5
Benzene	B78	Wet Wood	Stoker	Wet Scrubber	2	6.48E-02
Benzene	B79	Wet Wood	Not Reported	Wet Scrubber	1	3.80E-04
Benzene	B81	Wet Wood	Dutch Oven	Mechanical Collector	1	2.13E-05
Benzene	B86	Bark/Wet Wood	FBC	ESP	1	2.55E-05
Benzene	B91	Bark/Wet Wood	Stoker	ESP	1	6.66E-04
Benzene	B92	Wet Wood	Stoker	ESP	1	5.70E-04
Benzene	B99	Wet Wood	Dutch Oven	Mechanical Collector	1	1.54E-05
					AVG	4.21E-03
					MIN	1.54E-05
					MAX	6.48E-02
					STD DEV	1.47E-02
					COUNT	19

19 tests

ONE dry wood

WHY THE CURRENT FACTOR IS A PROBLEM

- The benzene emission factor may have resulted in overestimating benzene emissions from our boilers that burn kilndried biomass
- A quick look at annual emission reports shows many such boilers with annual emissions > TPER

POSSIBLE PATHWAYS FORWARD

- It is clear that DEQ has not yet developed a policy to address benzene emissions > TPER
- AHFA will be supporting affected members by:
 - Monitoring DEQ's future actions related to benzene emissions from member facilities
 - Providing technical support to facilities that must complete demonstrations
- AHFA will evaluate the benefit to membership of developing a new benzene emission factor
 - A new emission factor specific to dry wood boilers

Pathway to develop a more accurate emission factor

- Select facilities with a range of representative dry wood boilers
- Undertake a series of "engineering" tests at selected facilities to evaluate whether emissions are likely to vary from the current published emission factor

Pathway to develop a more accurate emission factor (cont'd)

- Undertake full EPA Method source testing at all volunteer facilities
- Develop new emission factor based on full test results and a standard protocol for factor calculation
- Provide full report to NCDEQ for consideration and adoption of the new factor

How does emissions source testing work?

- Facilities operate boiler at a reasonable maximum load, with full combustion
- Air emission testing specialists have specialized equipment to extract and collect stack emissions for benzene
- Stack being tested must have test ports meeting EPA specifications

How does emissions source testing work?

- Probes are inserted into the ports for sample collection
- A typical test consists of three one-hour test runs, with time between tests for equipment changeover
- Boiler operator must maintain logs during test for parameters such as:
 - Amount of fuel combusted
 - Steam production
 - Temperature

Air QUALITY dispersion modeling

- If source testing does not result in emissions < TPER, Air Quality Dispersion Modeling may be required
- "Dispersion modeling uses mathematical formulations to characterize the atmospheric processes that disperse a pollutant emitted by a source" (EPA)

Air QUALITY dispersion modeling

- Using local meteorology and topography, an emission rate input is used to predict a maximum offsite air concentration
- An emission rate lower than the current benzene factor may be helpful
- Maximum offsite result must be
 < 1.2 x 10E-04 mg/m³ (annual basis) (the Ambient Air Limit, or AAL)

Possible outcomes – Limited or No DEQ Demonstration requests

- Continue to report benzene emissions using the current emission factor, OR
- Use the only published dry wood boiler rate (2.9 x 10E-03 lbs/MMBTU), OR
- Undertake voluntary testing in an effort to reduce reportable emission rate

POSSIBE OUTCOMES – DEQ TAKES BROAD ACTION TO ENFORCE THE RULE

- Implement the AHFA benzene emission factor development program, AND/OR,
- Undertake boiler-specific testing
- Neither option is a guarantee
 - Emission rates may not change much, or may even be higher (unlikely)
 - Dispersion modeling may still be required
 - But model benzene input would likely be lower, increasing probability of success

BE SURE YOUR BOILERS ARE IN COMPLIANCE WITH ALL RULES

- Monitoring (e.g. Visible Emissions)
- Recordkeeping (e.g., fuel consumption)
- Reporting (e.g., MACT semiannual reports and/or annual emission reports)
- Work Practice requirements (e.g., periodic boiler tune-ups)

W. DEAN KAISER, QEP RET. STRATUS ENVIRONMENTAL SOLUTIONS, INC. dkaiser@strat.us

34 YEARS SERVING THE FURNITURE & WOOD PRODUCTS INDUSTRY